天天日夜夜,久久老女人,人人爱国产,91视频青青草

首頁 > 分析儀器設(shè)備 > 成像系統(tǒng) >
Swisstrace Twilite血液活度在線分析系統(tǒng)
Swisstrace Twilite血液活度在線分析系統(tǒng)

參考價格

面議

型號

品牌

產(chǎn)地

瑞士

樣本

暫無
北京泰坤工業(yè)設(shè)備有限公司

會員

|

第2年

|

生產(chǎn)商

工商已核實(shí)

留言詢價
核心參數(shù)
產(chǎn)品介紹
創(chuàng)新點(diǎn)
相關(guān)方案
相關(guān)資料
用戶評論
公司動態(tài)
問商家
留言詢價
×

*留言類型

*留言內(nèi)容

*聯(lián)系人

*單位名稱

*電子郵箱

*手機(jī)號

提交

虛擬號將在 180 秒后失效

使用微信掃碼撥號

為了保證隱私安全,平臺已啟用虛擬電話,請放心撥打(暫不支持短信)
×
是否已溝通完成
您還可以選擇留下聯(lián)系電話,等待商家與您聯(lián)系

需求描述

單位名稱

聯(lián)系人

聯(lián)系電話

Email

已與商家取得聯(lián)系
同意發(fā)送給商家
產(chǎn)品介紹
創(chuàng)新點(diǎn)
相關(guān)方案
相關(guān)資料
用戶評論
公司動態(tài)
問商家

一、產(chǎn)品介紹:

該系統(tǒng)適用于藥物動力學(xué)血液放射活度實(shí)時測量研究(可配合于PET、SPECT、PET/MRI系統(tǒng))

Twilite 是由 Swisstrace 公司所研發(fā)設(shè)計(jì)的高靈敏度自動血液取樣系統(tǒng)。此系統(tǒng)可與 PET 、SPECT、或 PET/MR 影像系統(tǒng)結(jié)合使用,無論是小至實(shí)驗(yàn)動物、大至其他更大的個體,均能夠在線高分辨率采集血液活度實(shí)時變化數(shù)據(jù)。

Twilite 系統(tǒng)的核心是一個設(shè)計(jì)精巧的偵測頭(探測器),由 LYSO 晶體與屏蔽外來輻射用的醫(yī)療級鎢加工製成,因此完全與 MR 影像系統(tǒng)相容。閃爍信號透過兩條可自訂長度的高效率光導(dǎo)管傳輸至光子偵測單元。此設(shè)計(jì)的偵測頭端完全沒有任何電子零件,所以能夠避免來自其他設(shè)備所造成的電磁干擾問題。此外,這樣的設(shè)計(jì)也能夠?qū)⑷梭w研究實(shí)驗(yàn)的潛在風(fēng)險*小化。

數(shù)據(jù)采集是使用 PMOD 公司所開發(fā)的 PSAMPLE 軟件,藉由 TCP/IP 介面?zhèn)鬏敚试S同時記錄多套 Swisstrace 系統(tǒng)的訊號,例如可同時使用 Twilite 系統(tǒng)與 Twin beta probe 系統(tǒng)。此外,尚有兩個類比訊號輸入孔可同時記錄來自其他儀器的訊號,例如Laser Doppler Flowprobes、ECG 或來自輔助設(shè)備的觸發(fā)訊號。 PMOD 軟件的功能模塊可對取得的放射活度信號進(jìn)行離線處理分析。

此系統(tǒng)也脫離計(jì)算機(jī)獨(dú)立工作。儀器前方的觸摸式面板可直接進(jìn)行操作,并即時顯示測量數(shù)據(jù)。

Twilite 系統(tǒng)性能優(yōu)越。除了擁有**的靈敏度外,即使在高輻射值的環(huán)境下,仍然呈現(xiàn)出穩(wěn)定的線性度與信噪比。

Swisstrace 公司的開發(fā)人員在放射定量實(shí)驗(yàn)方面具有相當(dāng)深厚的經(jīng)驗(yàn)。系統(tǒng)設(shè)計(jì)乃針對 PET 系統(tǒng)(包含小動物與人)**化。偵測頭精巧的尺寸尤其適合使用于小動物正子造影系統(tǒng)中,搭配動、靜脈分流管(arterio-venous shunt), Twilite 系統(tǒng)可測得全血的動脈輸入函數(shù)(arterial input function, AIF)而不必將血液抽離體外。

二、儀器結(jié)構(gòu)組成(1-9項(xiàng)為產(chǎn)品標(biāo)配):

圖1 圖2 圖3

1、連接股動脈與股靜脈的分流管 (自購)

2、蠕動幫浦(Peristaltic Pump)(自購)

3、Twilite 鎢制探測器

4、LYSO 晶體1

5、LYSO 晶體2

6、光導(dǎo)管:傳輸光子訊號至PMT。標(biāo)準(zhǔn)長度2 m,若需使用于MR 系統(tǒng)可延長至10 m

7、光子偵測單元

8、兩個模擬訊號輸入孔(可與其他品牌儀器配合使用,監(jiān)控呼吸、ECG 或血壓等)

9、TCP/IP 傳輸接口:可透過因特網(wǎng)傳輸或直接與計(jì)算機(jī)連接,使用PMOD 軟件PSAMPLE 模塊進(jìn)行數(shù)據(jù)采集

10、安裝PMOD 軟件的計(jì)算機(jī),進(jìn)行數(shù)據(jù)采集與分析(自購)

結(jié)構(gòu)說明:動靜脈分流管(小鼠用PE10,大鼠用PE50)可同時用于血壓量測、藥物注射及血液樣本采集等其他功能,如圖3所示。血液樣本采集可用解剖刀在導(dǎo)管上劃一個小口,在采集時間點(diǎn)將導(dǎo)管往缺口方向推,即可取得血液樣本。

●結(jié)構(gòu)與曲線函數(shù)(如下圖)

左圖為實(shí)驗(yàn)架構(gòu)。血流以蠕動泵驅(qū)動,從股動脈流出體外,經(jīng)過耦合訊號偵測頭后,再由股靜脈回到體內(nèi)。t1與t2兩個三向閥分別用來進(jìn)行血液取樣與藥物注射。右圖為Twilite 系統(tǒng)所測得的小鼠動脈輸入曲線。

三、系統(tǒng)規(guī)格:

四、用戶名單:

五、合作伙伴

PMOD Technologies Ltd. Unitectra

Zurich, Switzerland Zurich, Switzerland

University of Zurich CSEM

Zurich, Switzerland Neuch?tel, Switzerland

六、藥物動力學(xué)實(shí)驗(yàn)論文(部分摘要):

Quantification of Brain Glucose Metabolism by 18F-FDG PET

with Real-Time Arterial and Image-Derived Input Function in Mice

Malte F. Alf1,2, Matthias T. Wyss3,4, Alfred Buck3, Bruno Weber4, Roger Schibli1,5, and Stefanie D. Kr?mer11Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; 2Laboratory of Functional and Metabolic Imaging, Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; 3Department of Nuclear Medicine,

University Hospital Zurich, Zurich, Switzerland; 4Institute of Pharmacology and Toxicology, University of Zurich, Zurich,Switzerland; and 5Center for Radiopharmaceutical Sciences of ETH, PSI, and USZ, Paul Scherrer Institute PSI, Villigen, Switzerla

Kinetic modeling of PET data derived from mouse modelsremains hampered by thetechnical inaccessibility of an accurateinput function (IF).

In this work, we tested the feasibility of IF measurement with an arteriovenous shunt and a coincidencecounter in mice and compared the method

with an imagederived IF (IDIF) obtained by ensemble-learning independent component analysis of the heart region. Methods: 18F-FDG brain kinetics were quantified in 2 mouse strains, CD1 and C57BL/6, using the standard 2-tissue-compartment model. Fits obtained with the 2 IFs were compared regarding their goodness of fit as assessed by the residuals, fit parameter SD, and Bland–Altman analysis. Results: On average, cerebral glucose metabolic rate was 10% higher for IDIF-based quantification.The precision of model parameter fitting was significantly higher using the shunt-based IF, rendering the quantification of single process rate constants feasible. Conclusion: We demonstrated that the arterial IF can be measured in mice with a femoral arteriovenous shunt. This technique resulted in higher precision for kinetic modeling parameters than did use of the IDIF. However,for longitudinal or high-throughput studies, the use of a minimally invasive IDIF based on ensemble-learning independent component analysis represents a suitable alternative.

Key Words: energy metabolism; PET; molecular imaging; glucose; kinetic modeling

J Nucl Med 2013; 54:1–7 DOI: 10.2967/jnumed.112.107474

PET with 18F-FDG is a commonly used method to determine glucose metabolism in animal and human tissues (1). Full quantification of 18F-FDG kinetics can be achieved by applying a 2-tissue-compartment model (2). The model requires the time course of the 18F-FDG concentration in the target organ(tissue time–activity curve) and in arterial plasma (input function, IF). In human brain PET, the IF is commonly measured from a catheter placed in the radial artery. An alternative is derivation of the IF from PET images via values measured in a volume of interest placed over the cardiac ventricles or a large vessel. A prerequisite of image-derived IFs (IDIFs) is the location of the blood pool and the organ of interest in the same field of view. In general, one or more arterial blood samples are measured to calibrate the IDIF. In a recent review article for human PET(3), the authors concluded that arterial blood sampling remains the preferred method to define the IF, because invasiveness is hardly reduced by the use of an IDIF.

In small animals, the small blood volume is the major constraint for manual blood sampling. This constraint prompted the development of several alternative methods, such as the sampling of very small volumes via a microfluidic chip (4) or the use of b-probes for measuring the blood radioactivity (5,6). Despite these new physical methods, the main research focus has been on developing the use of IDIFs, where blood radioactivity is estimated directly from the dynamic PET images. IDIF generation from simple analysis of blood pool volumes such as the liver or the heart ventricles is flawed by 18F-FDG uptake by the liver or spillover from surrounding myocardium, cardiac motion, and partial-volume effects. Compensation can be achieved to varying degrees by image processing methods such as factor analysis (7), modelbased techniques (8), independent component analysis (9), so-called hybrid IDIFs (e.g., 10,11), and cardiac gating combined with improved image reconstruction algorithms (12). Most of these methods rely on at least 1 measure from a blood sample for scaling of the IDIF.Hence, blood sampling is not entirely obviated.

To our knowledge, there is currently no gold standard to define the real-time 18F-FDG arterial IF in mice in a reliable and easily accessible manner. In this study, we adapted a method for direct blood radioactivity measurements and an approach for the generation of IDIFs for use in mice. We acquired real-time blood radioactivity curves by means of a new coincidence counter in combination with an arteriovenous shunt and compared the findings to IDIFs generated from PET data of the cardiac region with an ensemblelearning independent component analysis (EL-ICA) algorithm (13).We used 2 different mouse strains to explore the possible strain dependency of our methods: C57BL/6 mice, because they are relevant for studies of genetically modified animals, and CD1 mice, because they are valuable as disease models,such as cerebral ischemia (14). The purpose of this work was 2-fold. First, we evaluated whether the arteriovenous-shunt/ counter technique, which was previously demonstrated in rats (15), is also feasible in mice. Second, we compared 18F-FDG kinetic parameters and fit precisions obtained with the experimental shunt IF and the IDIF.

創(chuàng)新點(diǎn)

暫無數(shù)據(jù)!

相關(guān)方案
暫無相關(guān)方案。
相關(guān)資料
暫無數(shù)據(jù)。
用戶評論

產(chǎn)品質(zhì)量

10分

售后服務(wù)

10分

易用性

10分

性價比

10分
評論內(nèi)容
暫無評論!
公司動態(tài)
暫無數(shù)據(jù)!
技術(shù)文章
暫無數(shù)據(jù)!
問商家
  • Swisstrace Twilite血液活度在線分析系統(tǒng)的工作原理介紹?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)的使用方法?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)多少錢一臺?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)使用的注意事項(xiàng)
  • Swisstrace Twilite血液活度在線分析系統(tǒng)的說明書有嗎?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)的操作規(guī)程有嗎?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)的報價含票含運(yùn)費(fèi)嗎?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)有現(xiàn)貨嗎?
  • Swisstrace Twilite血液活度在線分析系統(tǒng)包安裝嗎?
Swisstrace Twilite血液活度在線分析系統(tǒng)信息由北京泰坤工業(yè)設(shè)備有限公司為您提供,如您想了解更多關(guān)于Swisstrace Twilite血液活度在線分析系統(tǒng)報價、型號、參數(shù)等信息,歡迎來電或留言咨詢。
  • 推薦分類
  • 同類產(chǎn)品
  • 該廠商產(chǎn)品
  • 相關(guān)廠商
  • 推薦品牌
成像系統(tǒng)4月關(guān)注榜
推薦品牌
同品牌產(chǎn)品
DECTRIS線陣X射線探測器MYTHEN2
關(guān)注度 1286
MYTHEN單晶衍射儀探測器
關(guān)注度 715
MYTHEN2線陣X射線探測器DECTRIS
關(guān)注度 760
免費(fèi)
咨詢
手機(jī)站
二維碼

www.激情五月天| 亚洲啪啪综合网| xxxx| 国产自拍| 国产成人精品无码一区二区| 欧美xxxbbb| 我要看一级黄色片| 69精品| 69久久极品| 久久天天躁夜夜躁狠狠躁2022| 中文亚洲爆乳av无码专区| 亚洲麻豆秘 一区二区三区| 日韩天堂av| 亚洲国产精品一区二区制服| h在线观看网站| 国产精品久久久久9999小说| yyxfyzzy| 亚洲AV无码国产精品久久一| 老四电影网| 呦呦精品一区二区在线| 人妻中文激情| 性夜夜春夜夜爽夜夜免费视| 人人舔人人操| www.狠狠干| 日韩在线观看一区青青草| 亚洲一区在线日韩在线深爱| 精品福利一区| 蜜桃视频黄色| 99r在线视频| 青青草av一区二区| 久久久亚洲欧洲日产国码aⅴ| 人妻比较好| 好色五月婷婷| 91亚洲一线产区二线产区| 婷婷五月综合色视频| 亚洲熟妇色XXXXX欧美老妇Y| 久久精品国产亚洲AV蜜臀| 久久精品毛片免费播放| 制服丝袜强奸乱伦| 玖玖 AV免费播放| 另类图区|